Surgical Management of GISTs in the Era of TKIs

Alan S. Livingstone
Professor and Chairman of Surgery
University of Miami Miller School of Medicine

THE LIFE RAFT GROUP
MIAMI FL
May 16, 2015
Historical Perspective

- Term GIST coined in 1983
- Cells arise from intestinal pacemaker cells (Interstitial cells of Cajal)
- c-kit was identified as a marker of GIST in 1998 resulting in distinguishing these tumors from leiomyosarcomas
GIST: What is it?

- The most common GI mesenchymal tumor
- About 5000/year in USA
- Most express CD34 and c-kit tyrosine kinase (CD117) by IHC
Presentation

- Nonspecific
- 50% bleeding
- SB obstruction
- Rare perforation
- 30-50% present ‘urgently’
Distribution Of GIST And Other GI Mesenchymal Neoplasms

- Found anywhere in the GI tract
- <3% of all GI cancers
- 20% of SB cancers
Distribution Of GIST And Other GI Mesenchymal Neoplasms

- **Stomach**: 44%
- **Small Intestine**: 32%
- **Rectum**: 10%
- **Large intestine**: 5%
- **Other***: 9%

* intraabdominal, mesentery, omentum, esophagus, diaphragm
Incidence

- Prior to use of c-kit IHC, GIST was misdiagnosed as smooth muscle tumor
- SEER data set after 2000 indicates 82% of all GI mesenchymal tumors and 96% of gastric tumors are GISTS
Pathology

- 70% spindle cell: cf. leiomyosarcoma
- 30% epithelioid: cf. leiomyoblastoma
- CD 34: 70-80%
- c-kit: 95%
- Often PDGFRA
- Actin: 30%
- Rarely desmin or S100
GI mesenchymal tumors: Classification

Hirota S and Isozaki K. Pathology International 2006
Sporadic (90%) and familial (100%) cases show gain of function mutations of the c-kit gene.
- Sporadic: somatic
- Familial: Germ-line

C-kit is a Tyrosine Kinase receptor encoded by the protooncogene c-kit
GIST: Pathogenesis: c-kit

EC domain

TM domain
JM domain
TK-I domain
KI
TK-II domain

Exon 9
Exon 11
Exon 13
Exon 17

Hirota S and Isozaki K. Pathology International 2006
GIST: Pathogenesis: c-kit

- Natural ligand: Stem cell factor (SCF)
- Two wild-type molecules form a dimer by the binding of 2 molecules of SCF

DIMERIZATION

Hirota S and Isozaki K. Pathology International 2006
GIST: Pathogenesis: c-kit

Dimerization

Phosphorylation of intracellular TK

Cell proliferation and differentiation

2^0 to IC signaling cascade

RAS/MAP Kinase, PI3k/Akt pathway
mTOR, p70/85S6K
STAT1, STAT3

Rubin BP. Histopathology 2006
Hirota S and Isozaki K. Pathology International 2006
Gain-of-function mutations of \textit{c-kit} protooncogene

Constitutive tyrosine phosphorylation without SCF
GIST: Pathogenesis: c-kit

Normal Switch

Loss of function mutation

Gain of function mutation

Hirota S and Isozaki K. Pathology International 2006
GIST: *c-kit* Mutations

Identified in 85-90% of GISTs

Mutations result in full-length *c-kit* proteins

<table>
<thead>
<tr>
<th>Location of mutation</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 9</td>
<td>Duplication of 502-Ala and 503-Try</td>
</tr>
<tr>
<td>Exon 11</td>
<td>Various mutations from 550-Lys to 592-Gy</td>
</tr>
<tr>
<td>Exon 13</td>
<td>Point mutation of 642-Lys to Gu</td>
</tr>
<tr>
<td>Exon 17</td>
<td>Point mutation of 822-San to Lys or His</td>
</tr>
<tr>
<td></td>
<td>No Mutation= Wild Type</td>
</tr>
</tbody>
</table>

Hirota S and Isozaki K. Pathology International 2006
GIST: Prognostic Factors
Most Important

- size greater than 5.0 cm
- > five mitoses per 50 HPFs
- Necrosis
- Metastases
- Distal location
- High proliferation index: Ki-67 >10%
Historical Perspective

- Before 2000, surgery only effective therapy for 1^0 or 2^0 disease
- Even today, no cure without surgery
- Radiation, chemotherapy, IORT, intraop hyperthermic chemotherapy ineffective
GIST – Pre Imatinib

<table>
<thead>
<tr>
<th>Author (Institution)</th>
<th>Years</th>
<th>Total Patients</th>
<th>Complete Resection</th>
<th>5-year Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearhs (Mayo)</td>
<td>1950-74</td>
<td>108</td>
<td>52</td>
<td>50</td>
</tr>
<tr>
<td>Shiu (MSKCC)</td>
<td>1949-73</td>
<td>38</td>
<td>20</td>
<td>65</td>
</tr>
<tr>
<td>Parker (MCV)</td>
<td>1951-84</td>
<td>51</td>
<td>30</td>
<td>63</td>
</tr>
<tr>
<td>Pollock (MDACC)</td>
<td>1957-97</td>
<td>191</td>
<td>99</td>
<td>48</td>
</tr>
<tr>
<td>DeMatteo (MSKCC)</td>
<td>1982-98</td>
<td>200</td>
<td>80</td>
<td>54</td>
</tr>
</tbody>
</table>
GIST - Presentation

GIST: DFS By Tumor Size

![Graph showing survival rates by tumor size](image)
GIST: Recurrence After Complete Resection

- Recurs in >40% of patients – most will die from disease.
- Predominant site is intra-abdominal
 - Liver: 2/3
 - Local
 - Peritoneal
Challenges
(1) Diagnosis

- H & P - mass, bleeding (GI or peritoneal), obstruction, or perforation
- Endoscopy
- EUS
- CT/MRI
- PET - including response to Rx
Challenges
(2) Criteria For malignancy

- Metastases
- Invasion of adjacent structures
- Size >5 cm (20%<5 cm metastasize)
- Mitotic index: >5 per 50 HPF
- Necrosis
- Ki-67 index >10%
Challenges

(3) Emergency Presentation

- 1/3 of patients have bleeding, obstruction, or perforation
- GIST found unexpectedly
- Must know principles
- Resect if possible
- Do FS before radical surgery to R/O lymphoma or germ cell tumor
Challenges

(4) Local Extension Or Metastases

- Therapy evolving in era of imatinib
1) Percutaneous biopsy **not** routinely recommended unless lesion unresectable or change in diagnosis would alter therapy e.g. lymphoma or germ cell tumor

- EUS with FNA and IHC helpful
GIST: Cytology

Increasing FNAC performed endoscopically

c-kit +ve
Principles In Era Of Imatinib

2) Main Rx for primary resectable GIST is still surgery:
 - clear margins but not radical
 - en bloc resection of involved organs
 - rupturing tumor worsens prognosis
 - no routine lymphadenectomy
Principles In Era Of Imatinib

3) Imatinib cannot compensate for inadequate initial surgery:

- get grossly clear margins
- microscopic margins may not impact survival
Principles In Era Of Imatinib

4) Locally advanced disease:
 - downstage with imatinib (4-6 months)

5) Unsuspected metastases:
 - usually poor prognosis
 - avoid radical surgery unless can safely get clear margins
6) Metastatic primary disease - initially Rx with imatinib
 a. if good global response, consider resection with relapse
 b. if global progression, surgery unhelpful
 c. resect single imatinib-resistant clone
Principles In Era Of Imatinib

7) Recurrent disease (>40% of pts.)

- usually intraabdominal
- prior to imatinib, 1/3 resectable with median survival of 15 months
- resect isolated liver met with long disease free interval
- treat local recurrences initially with imatinib
Evaluating Imatinib Responses

- Clinical response
- CT can be misleading - no shrinkage
- PET scan - decreased FDG uptake, and often rapid response
What Results Can Be Anticipated Applying These Principles?

SEER data
Benefits of Surgery

- Surgery: curative or palliative intent
- DFS only with surgical resection
- Palliative resection can extend survival
- Optimal extent of surgical resection?
Effects of Imatinib on Survival

- FDA approval of Imatinib in 2000
- Improved survival in advanced and metastatic GIST
- Initially unclear how to integrate surgery with imatinib
- Clues from SEER data and trials
Improved Survival for Gastric Mesenchymal Neoplasms Including GIST after 2000

<table>
<thead>
<tr>
<th></th>
<th>2-Year Survival Pre-2000</th>
<th>Median Survival (Months)</th>
<th>2-Year Survival Post-2000</th>
<th>Median Survival (Months)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>58.88% (n=525)</td>
<td>>35</td>
<td>73.09% (n=307)</td>
<td>>35</td>
<td>0.0031</td>
</tr>
<tr>
<td>Stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Localized</td>
<td>78.94% (n=302)</td>
<td>>35</td>
<td>88.3% (n=175)</td>
<td>>35</td>
<td>0.0439</td>
</tr>
<tr>
<td>Regional</td>
<td>36.86% (n=86)</td>
<td>17.78</td>
<td>74.58% (n=54)</td>
<td>>35</td>
<td>0.0117</td>
</tr>
<tr>
<td>Distant</td>
<td>16.67% (n=102)</td>
<td>9.14</td>
<td>35.94% (n=58)</td>
<td>13.3</td>
<td>0.0391</td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 4.9cm</td>
<td>76.96% (n=80)</td>
<td>>35</td>
<td>89.18% (n=54)</td>
<td>>35</td>
<td>0.1319</td>
</tr>
<tr>
<td>5-9.9cm</td>
<td>68.7% (n=158)</td>
<td>>35</td>
<td>86.39% (n=103)</td>
<td>>35</td>
<td>0.0104</td>
</tr>
<tr>
<td>10-20cm</td>
<td>57.74% (n=155)</td>
<td>33.23</td>
<td>73.72% (n=80)</td>
<td>>35</td>
<td>0.1762</td>
</tr>
<tr>
<td>Greater than 20cm</td>
<td>40% (n=45)</td>
<td>18.83</td>
<td>43.26% (n=20)</td>
<td>12.01</td>
<td>0.3961</td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I,II</td>
<td>80.03% (n=143)</td>
<td>>35</td>
<td>87.22% (n=41)</td>
<td>>35</td>
<td>0.5829</td>
</tr>
<tr>
<td>III,IV</td>
<td>38.24% (n=102)</td>
<td>16</td>
<td>52.22% (n=51)</td>
<td>>35</td>
<td>0.1146</td>
</tr>
</tbody>
</table>
Imatininb for Advanced Disease
B2222 trial - ASCO 2006

- Objective response rate - 68%
- Exon 11 response rate - 87%
- No KIT or PDGFRA mutation – 0% response
- Median time to response – 13 weeks
- Median duration of response - 118 weeks
- Median time to failure – 84 weeks
- Median survival – 4.8 years
Who Should Receive Imatinib?

ACOSOG Z9001: Phase III trial

- All R0, >3cm, and c kit positive
- Adjuvant Gleevec for 1 year
- Median follow-up 19.7 months
- Recurrence free survival (RFS) - 98 vs 83%
- RFS †regardless of size (esp high risk)

DeMatteo, Lancet 2009
Who Should Receive Imatinib?

ACOSOG Z9001: Phase III trial

- See recurrences 6 months after stopping
- Continue imatinib indefinitely if high risk?
- OS similar due to short f-up and crossover design
- Need longer f-up to show if adjuvant Rx increases cure rate

DeMatteo, Lancet 2009
One vs 3 Yrs Adjuvant Imatinib?
High Risk GISTs (Scandinavia)

- RFS at 5 years: 66% vs 48% (HR 0.46)
- OS at 5 years: 92% vs 82% (HR 0.45)
- Benefit in exon 11 > exon 9?
- Is longer treatment justified?

Joensuu JAMA 2012
Imatinib- How Long?
French Sarcoma Group

- Advanced GIST with 1 year of tumor control
- Continuous Rx arm- 26 patients with 31% progression
- Interrupted arm- 32 pts 81% progression at median 6 mths even if had no detectable tumor

JCO 2007
Imatinib- How Long?
French Sarcoma Group

- 92% again responded to imatinib
- Drug holiday not recommended

JCO 2007
Imatinib- How Long?

French Sarcoma Group (2)

- **Advanced** GIST with 5 years of tumor control
- **Continuous Rx arm** - no progression
- **Interrupted arm** - 45% progression at 1 yr
- Imatinib does **not** cure advanced GISTs

Lancet Onc 2010
Benefit of Surgery After Imatinib For Advanced Disease- f/up 15 mths

- If stable disease: NED 78%, OS 95%
- Limited progression: NED 25%, OS 88%
- General progression: NED 7%, OS 0%

Brigham, JCO 2006
Benefit of Surgery After Imatinib For Advanced Disease (134 pts Korea)

- If stable disease: resect residual disease
- Time to progression with resection 88 months vs. 43 months with imatinib alone
- Surgery decreased risk of progression by 3X and risk of death by 5X

Park, ASCO 2013
Cost Effectiveness 1 vs 3 Yrs
Adjuvant Imatinib (USA cost)
Quality Adjusted Life Years

- QALYs 8.53 vs 7.18
- Cost $302K vs $217K
- Cost $62K/QALY

Sanon J Med Econ 2013
Interesting Cases
Esophageal Primary

- Dysphagia
- GI bleeding
Acute Abdominal Pain
Difficult, or Inoperable?
Stomach, Pancreas, Spleen, Adrenal, Diaphragm

GIST arising from the back of the stomach—prolonged imatinib
R0 resection-
Partial gastrectomy, distal pancreas, spleen, left adrenal
Stomach, liver, spleen, and transverse colon
Eight Months of Imatinib
En Bloc Resection of Stomach, Left Lobe of Liver, Colon, Spleen
R0 Resection-indefinite Imatinib
Obstructed for 8 Months on Hyperalimentation-Previous Resections including Right Hepatic Lobectomy-Flew down to our Hospital
Metastatic GIST but Non-malignant SBO

Don’t give up too soon!
Dilated loop of Small Bowel
Dilated jejunum and collapsed ileum - no disease in liver
Contrast in massively dilated jejunum with ‘hungry’ distal bowel
Omentectomy and R2 debulking-obstruction was due to internal hernia. Indefinite TKIs.
Rectal GISTs
- 66 yo male with urinary frequency and hard, frequent stools with straining
- Firm, fixed anterior mass 2cm above dentate line
- Transrectal biopsy = GIST
Rectal GIST

- Treated with imatinib 10 months, tumor stable, symptoms resolved
- Transrectal US confirmed location of mass, unable to assess invasion prostate
- PET/CT decreased SUV uptake
- Localized to pelvis
Rectal GIST

- Lower midline incision
- Localized to pelvis- adherent to prostate and seminal vesicles
- R1 resection on prostate
- Primary repair of rectum
- Indefinite TKIs
When to give up on recurrences?
Who Should Receive Imatinib?

- Neoadjuvant: locally advanced?
- Therapeutic: Unresectable, metastatic, recurrent disease