Pablo A. Bejarano, M.D.
Pathology
Cleveland Clinic Florida
bejarap@ccf.org

May 16, 2015

# Gastrointestinal Stromal Tumor (GIST)

- 1. Microanatomy of GI tract
- 2. Incidence and organs affected
- 3. Pathology
- Role of immunohistochemistry: Diagnosis and differential
- 5. The pathology report
- 6. Parameters for risk and recurrence
- 7. The molecular analysis and pathologist's role
- 8. Summary



# Incidence

- Most common mesenchymal GI tumor
- 0.2% of all GI tumors
- · 80% of all GI sarcomas
- 5,000 new cases per year in the USA
- Most patients are adults
   Affects women and men equally



# Gross

- Lobulated/multilobulated tumor with smooth edges.
- Marked variability in size (average 10 cm)
- It may extend to mucosa and/or serosa or in both directions.
- · It may ulcerate mucosa and bleed
- · It may have cystic changes
- · Necrosis may be seen.

























| H&E | CD117<br>(KIT) | CD34 | m   | nooth<br>uscle<br>actin | S100<br>protein | Des | Desmin<br>2% |   | Pan-<br>keratin |  |
|-----|----------------|------|-----|-------------------------|-----------------|-----|--------------|---|-----------------|--|
|     | 95%            | 70%  |     | 30%                     | 5%              | 2   |              |   |                 |  |
|     |                |      |     |                         | No.             |     |              |   |                 |  |
|     | + +            | +    | + + | +                       | + +             | +   | +            | + |                 |  |



### **GIST DIFFERENTIAL DIANGOSIS**

Carcinoma
Melanoma
Leiomyoma
Leiomyosarcoma
Schwannoma

**Fibromatosis** 

# KIT-negative GISTs

# 

# **Role of Pathologist**

- Provide diagnosis on the initial biopsy
- On the excisions: Evaluate margins and determine factors that may predict agressivness
- · Document metastasis
- Select part of tumor and order tests to determine presence of mutations with therapeutic purposes
- Assess response to therapy

## **Determining Risk of Recurrence**

- 10% to 30% of all GISTs behave in a malignant fashion.
  - -All GISTs have the potential to become malignant
- GISTs are not classified as benign or malignant at the time of discovery
  - -The clinical risk is stratified for each tumor
  - Combination of size, localization and number of mitosis is used to predict malignant potential
- However, there are no histological parameters to predict behavior with certainty
- · Necrosis and celularity may influence behavior?

# EVALUATION OF RECURRENCE RISK -MITOSIS-



# EVALUATION OF RISK

| Mitosis              | Size        | Stomach            | Duodenum       | Jejunum<br>ileum  | Rectum         |
|----------------------|-------------|--------------------|----------------|-------------------|----------------|
| ≤ 5 por 50<br>fields | ≤2 cm       | No (0%)            | No (0%)        | No (0%)           | No (0%)        |
|                      | > 2 ≤ 5 cm  | Very low<br>(1.9%) | Low (8.3%)     | Low (4.3%)        | Low (8.5%)     |
|                      | > 5 ≤ 10 cm | low (3.6%)         | (Insuff. info) | Moderate<br>(24%) | (Insuff. info) |
|                      | > 10 cm     | Moderate<br>(10%)  | High (34%)     | High (52%)        | High (57%)     |
| > 5 por 50<br>fields | ≤ 2 cm      | No*                | (Insuff. data) | High              | High (54%)     |
|                      | > 2 ≤ 5 cm  | Moderate<br>(16%)  | High (50%)     | High (73%)        | High (52%)     |
|                      | > 5 ≤ 10 cm | High (55%)         | (Insuff. info) | High (85%)        | (Insuff. info) |
|                      | > 10 cm     | High (86%)         | High (86%)     | High (90%)        | High (71%)     |

Problem - Small GISTs without mitosis may develop metastasis

# **Pathology Report**

- Size
- · Sites involved
- · Mitotic activity (per 50 fields at high magnification)
- · Margins of resection
- · Presence of metastasis
  - Intra-abdominal dissemination
  - Liver is a usual site of metastasis
  - Lymph nodes are known for not being involved by GIST.

**Molecular Analysis** 

- Tumor proliferates thanks to mutations in the genes for KIT or PDGFRA (platelet derived growth factor receptor alpha)
- Both genes codify proteins located on the cell surface.
- The mutations cause constant disregulated activation resulting in uncontroled proliferation







## Clinical Use of the GIST genotype

- Evaluation of the KIT and PDGFRA mutations are useful to:
  - -Confirm the diagnosis.
  - -Predict response to imatinib (target therapy)
  - Consider the possibility of adjuvant therapy
  - Develop new therapeutic approaches when imatinib fails







### Imatinib: Response Prediction by the Kinase Mutation Status in Patients with Advanced Disease

- · It controls the disease in 80% of patients.
- · Imatinib doses: 400 mg or 800 mg day.
  - KIT mutation exon 9: progression-free survival is longer with 800 mg.
  - KIT mutation exon 11: progression-free survival is not influenced by drug dosage.

### Resistance to Imitanib

- · It is mainly acquired resistance:
  - occurs after at least 6 months of initial response to the drug.
- · Due to secondary mutations.
  - In 45% of patients who initially had it in exon 11:
    - · Most of the secondary mutations are in exon 17.
- <u>Sunitinib</u>, which targets KIT, has demonstrated efficacy in patients with GIST after they experience imatinib failure.

### Sunitinib

PFS and OS are longer for patients with secondary KIT exon 13 or 14 mutations than for those with exon 17 or 18 mutations.

Pathologist's handling of the formalin-fixed tissue and paraffin block



