Cutting Edge Treatment: Can immunotherapy work for GIST?

Ronald P. DeMatteo MD
Memorial Sloan-Kettering Cancer Center
Imatinib is generally not curative in GIST

How do we improve outcome?

- Adjuvant imatinib
- Surgery for residual metastatic disease
- Other tyrosine kinase inhibitors
- Imatinib + immune therapy
Postoperative imatinib is not curative

Metastatic

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N</th>
<th>Failed</th>
<th>Median (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400mg/day</td>
<td>345</td>
<td>278</td>
<td>18</td>
</tr>
<tr>
<td>800mg/day</td>
<td>349</td>
<td>267</td>
<td>20</td>
</tr>
</tbody>
</table>

f/u 54 months

Postoperative

- Imatinib
- Placebo

N=713
f/u 74 months

Blanke, JCO 2008;26:626
Lancet 2009; 373:1097
J Clin Oncol 2014; 32:1563
Murine model of GIST

Deletion mutation in *KIT* exon 11

Sommer, PNAS 2003; 100:6706
KIT/CSF1R Inhibitor > Imatinib in Mouse GIST

Masson’s trichrome @ 4 weeks

Control

Imatinib

PLX3397

Scale bar, 100μm

Scale bar, 20μm

Clin Cancer Res 2014; 20:2350
MET Compensates for KIT Inhibition

2 wks in KitΔ558/+ mice

<table>
<thead>
<tr>
<th></th>
<th>Vehicle</th>
<th>Imatinib</th>
<th>Sunitinib</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-KIT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-MET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H129 tumor volume (mm³)

- Vehicle
- Imatinib
- Cabozantinib

Days 0 4 8 12 16

Cancer Res 2015, 75:2061
CD8+ T cells contribute to imatinib’s effects

Diagram

- **GIST**
- **Imatinib/Vehicle 7 days**
- **+/- CD8/CD4 depleting Ab**
- **Tumor weight**

Graph

- **Vehicle**
- **Vehicle + Isotype**
- **Vehicle - CD8**
- **Imatinib**
- **Imatinib + Isotype**
- **Imatinib - CD4**
- **Imatinib - NK**
- **Imatinib - CD8**

Tumor weight (g)

- 0.0
- 0.1
- 0.2
- 0.3
- 0.4

* Nature Med 2011; 17:1094
Imatinib increases intratumoral T eff:T reg ratio

Local Node

<table>
<thead>
<tr>
<th></th>
<th>CD8$^+$ T eff/T reg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td></td>
</tr>
<tr>
<td>Imatinib</td>
<td></td>
</tr>
</tbody>
</table>

Tumor

<table>
<thead>
<tr>
<th></th>
<th>CD8$^+$ T eff/T reg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td></td>
</tr>
<tr>
<td>Imatinib</td>
<td></td>
</tr>
</tbody>
</table>

*
How does imatinib modulate T eff:T reg?

IDO -7x

GENES

VEHICLE

IMATINIB
Indoleamine 2,3-dioxygenase (IDO)

- Catalyzes tryptophan to immunosuppressive metabolites
- Inhibits maternal T cell immunity during gestation
- Induces T cell tolerance in tumor, infection, autoimmunity
Imatinib inhibits tumor cell IDO

<table>
<thead>
<tr>
<th>Node</th>
<th>Spleen</th>
<th>Vehicle</th>
<th>Imatinib</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CD8:T reg correlates with imatinib sensitivity in human GIST (N=45 specimens)
Mouse and Human T Cells in GIST

Zitvogel and Kroemer, Nat Med 2011; 17:1050
Imatinib synergizes with anti-CTLA-4 in mouse GIST

![Graph showing the synergy between Imatinib and anti-CTLA-4 in GIST](graph.png)

Nature Med 2011; 17:1094
Co-inhibitory Receptors on T cells in Human GIST

106 specimens in 85 patients
PD-1 Expression on T cells in Human GIST
PD-L1 Expression in Human GIST

N=41
PD-1/PD-L1 Therapy in Murine GIST

Graphs showing tumor weight (% of control) over 4 weeks and 1 week for different treatment groups: Veh+Iso, Im+Iso, Veh+αPD-1, Im+αPD-1, Veh+αPD-L1, Im+αPD-L1. Significant differences are indicated by asterisks.

Images of KIT staining for Veh+Iso, IM+Iso, IM+αPD-1, IM+αPD-L1 after 1 week of treatment.

Bar graphs showing %Ki67+ and %IFN-γ+TNF+ of CD8+ over 1 week for Im+iso, Im+αPD-1, Im+αPD-L1. Significant differences are indicated by asterisks.

Bar graph showing tumor weight (% of control) for Ctr+Iso, 1-MT+Iso, 1-MT+αPD-1 after 1 week of treatment.
Summary

• GIST expresses IDO

• Imatinib works in part by decreasing IDO

• IDO inhibition alone has some anti-tumor effects

• Targeting PD-1/PD-L1 improves upon imatinib
Acknowledgments

Vinod Balachandran
Adrian Seifert
Mike Cavnar
Shan Zeng
Teresa Kim
Ferdi Rossi
Jennifer Zhang
Michael Beckman
Joanna Maltbaek
Jen Loo

Peter Besmer
Cristina Antonescu

National Cancer Institute CA102613, CA094501
Geoffrey Beene Foundation
Mr. Pit and Emilie van Karnebeek
GIST Cancer Research Fund
Swim Across America
P30 CA008748 (Thompson)