Current Research Findings from the UK Paws GIST Clinic

Dr Ruth Casey

(rc674@medschl.cam.ac.uk)
Clinical research fellow
Cambridge University, UK
GIST

Mutations in KIT/PDGFRA (85%) Wild-Type GIST (15%)

SDH deficient

Germline mutation:
-SDHA
-SDHB
-SDHC
-SDHD

SDHC epi-mutation

SDH preserved

-NF1
-BRAF

Other
Genotype of SDH deficient UK PAWS GIST WT GIST cohort

- SDHA: 10 cases
- SDHB: 2 cases
- SDHC: 2 cases
- SDHD: 1 case
- SDHC epimutation: 4 cases
Synchronous tumours with SDH deficient GIST

26% of SDH deficient GIST cohort had synchronous tumors
Histological characteristics of wt GIST

SDH preserved
- Spindle cell histology from small bowel GIST
- Typically small bowel

SDH deficient
- Mixed epithelioid histology from gastric GIST
- Typically gastric

Gross specimen of gastric wt GIST
SDH deficient GIST

- Young age at presentation
- Primary tumour is typically gastric in location
- Histology is epithelioid or mixed epithelioid
- High rates of metastases
- *SDHA* is the most common *SDHx* gene implicated in SDH deficient GIST
- Most common variant is *SDHA* c.91C>T p.(Arg31Ter)
- Important to remember genetics may not always be the answer in wt GIST, high frequency of *SDHC* epi-mutations in this cohort
Diagnostic algorithm for SDH deficient wt GIST:

- **KIT and PDGFRA**
 - WT GIST GIST

- **Histology review and SDHB IH**
 - Germline genetic testing*
 - No Pathogenic germline variant detected
 - Preserved SDHB IH expression
 - Testing complete/Research studies
 - Pathogenic germline variant detected

- **MRI neck and skull base +/- MRI abdomen and pelvis**
 - Plasma metanephrines + 3MT

- **Loss of SDHB IH expression**
 - SDHC promoter methylation analysis of tumour
 - Methylation >10%
 - Confirm low SDHC mRNA expression
 - Somatic mutation testing
 - Methylation <10%
 - Testing complete/Research studies

* = SDHA, SDHB, SDHB, SDHD, SDHAF2, NF1, MAX, TMEM127, KIT, PDGFRA, VHL
Identify new functional assessment tools to identify SDH deficiency

• Ex-vivo metabolomics
Targeted metabolomics profiling for succinate
2. Evaluate new translational biomarkers for diagnosis, surveillance and to monitor response to therapeutic intervention in SDH deficient disease.
In-vivo metabolomics using MRI spectroscopy (1H-MRS)
Monitoring biological response to treatment

37 year old female
Metastatic PPGL, *SDHB c.268C>T*
Treatment with Lu177 PRRT

<table>
<thead>
<tr>
<th></th>
<th>Pre-treatment</th>
<th>Post-treatment</th>
<th>Reference range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma normetadrenaline</td>
<td>1861</td>
<td>1193</td>
<td><1000 pmol/l</td>
</tr>
<tr>
<td>Plasma metadrenaline</td>
<td><180</td>
<td><180</td>
<td><600 pmol/l</td>
</tr>
<tr>
<td>Plasma methoxytyramine</td>
<td>2910</td>
<td>1193</td>
<td><180 pmol/l</td>
</tr>
</tbody>
</table>
3. Developing diagnostic tests for clinical utility to identify potential therapeutic targets
- Technique which can be applied to paraffin embedded samples
- Cost effective and time efficient
- Pyrosequencing technique
Acknowledgements

Supervisor
Prof Eamonn Maher

Collaborators
Dr Ferdia Gallagher
Dr Mary McLean
Dr Olivier Giger
Dr Madhu Basetti
Dr Alison Marker
Dr Rogier ten Hoopen
Dr David Asher
Dr Anne Warren

Clinical team
Dr Ramesh Bulusu
Dr Ben Challis
Dr Soo-Mi Park

Funding bodies
GIST Support UK
HRB Ireland
PAWS GIST

PATIENTS