Background

- Gastrointestinal stromal tumors (GIST) are a rare type of sarcoma, driven by activating mutations encoding tyrosine kinase receptors for c-kit (KIT) and platelet-derived growth factor receptor alpha (PDGFRA).
- The cost impact associated with increasing molecular testing rates is discussed, including the effects of treatment allocation decisions and AIAs.

Objective

The objective is to assess the potential cost impact of increasing molecular testing rates for GIST patients, including the effects of treatment allocation decisions and AIAs.

Methods

Study design

- A model was developed in Microsoft Excel® to estimate the cost impact associated with increased molecular testing rates in GIST patients for PDGFRA exon 18 and KIT exon 9 mutations, for a hypothetical US health plan with 1 million covered lives, on a 12-month incidence basis. All costs are presented in USD (3).

- The model compared costs based on observed current testing rates at diagnosis to a scenario where 100% of patients are tested. Results determine optimal pharmacy and AE costs in a population not expected to benefit from imatinib treatment (Tables 1 and 2).

- Patient population: Patients with metastatic/irresectable GIST, as well as GIST treated in the advanced setting (adjunctive KIT), with PDGFRA exon 18 or KIT exon 9 mutations, were selected for inclusion, given that treatment allocation will change based on testing.

Results

- **Base case analysis cost impact**
 - An increase in testing rates to 100% for both mutation types is associated with a potential annual cost increase of $15,213 per million members, or $0.015 per member time (PMPY) (2).
 - Increased costs in the base case are driven by increased dosing and longer progression-free survival (PFS) in exon 9 patients.
 - Inclusion of only PDGFRA exon 18 testing results in a cost saving of $0.008 PMPY due to lower pharmacy costs.
 - For PDGFRA exon 18 and KIT exon 9 molecular testing combined, 10 additional patients need to be tested for one patient to receive optimized treatment.
 - The magnitude of the cost impact associated with increased testing remains small across all plan types.

Conclusions

- Increased molecular testing in GIST is associated with minimal additional cost and a meaningful increase in the number of patients receiving optimized treatment.
- Estimation to be under $0.02 PMPY, even if KIT exon 9 testing is included in the model.
- Increasing PDGFRA 18 testing alone may even lead to modest cost savings.
- The major driver of estimated cost impact is pharmacy costs, but only a minority is directly due to an increased testing rate.
- Improved treatment can be achieved with a moderate amount of additional testing, suggesting that GIST patients tested for one patient to receive optimized treatment.
- Results suggest that the economic impact associated with PDGFRA exon 18 and KIT exon 9 testing should not be a barrier to increase testing rates in this model.

A model estimating the budget impact associated with introduction of axitinib that incorporates these testing costs is currently being developed.

Table 1: Overview of the GIST cost of testing model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment allocation</td>
<td>Based on the clinical trials scenario, for patients with KIT exon 9, this is prior to initiation of therapy, but including a 6.4 month attrition rate. For patients with PDGFRA exon 9, this is prior to initiation of therapy, but including a 6.4 month attrition rate.</td>
</tr>
</tbody>
</table>

Table 2: Key model assumptions

- **Assumption:** Baseline costs include up-front costs for testing and all associated costs for up to 842 months. Patients are tested at diagnosis, unless otherwise specified.

Figure 1: Flow of GIST patients through PDGFRA exon 18 and KIT exon 9 testing

Presented at the Academy of Managed Care Pharmacy (AMCP) Annual Meeting; April 20–24, 2020; Houston, TX.