GIST Research Update: What’s New and Promising?

Location of Gastric GIST Predicts Mutation Profile

Jason Sicklick, MD, FACS
Professor of Surgery | Division of Surgical Oncology
Adjunct Professor | Department of Pharmacology
Executive Vice Chair of Research | Department of Surgery
Co-Leader, Sarcoma Disease Team | Moores Cancer Center

jsicklick@health.ucsd.edu @JasonSicklick
Disclosures

Research Funding
- Amgen
- Foundation Medicine

Consultant
- Deciphera

Speaker
- Bayer
- Deciphera
- Foundation Medicine
- La Hoffman-Roche
- Merck
- QED
The evolution of GIST genomics

KIT
Gain-of-function mutations
Hirota et al., *Science.*

1998
The evolution of GIST genomics

KIT
Gain-of-function mutations
Hirota et al., *Science.*

2003

PDGFRA
Activating mutations in 35% of non-KIT mutant GIST
Heinrich et al., *Science.*

1998

GEF

RAS

NF1

BRAF

GDP

GTP
The evolution of GIST genomics

KIT
- Gain-of-function mutations
- Hirota et al., *Science.*

Germline NF1
- GIST in pts with NF-1

PDGFRA
- Activating mutations in 35% of non-KIT mutant GIST
- Heinrich et al., *Science.*

1998

2003

2006
The evolution of GIST genomics

KIT
Gain-of-function mutations
Hirota et al., *Science*.

2003

Germline NF1
GIST in pts with NF-1

2007

1998

PDGFRA
Activating mutations in 35% of non-KIT mutant GIST
Heinrich et al., *Science*.

2006

Germline SDH
7 families with SDH mutations
McWhinney et al., *NEJM*.
The evolution of GIST genomics

KIT
- Gain-of-function mutations
 - Hirota et al., *Science.*

2003

Germline NF1
- GIST in pts with NF-1

2007

PDGFRA
- Activating mutations in 35% of non-KIT mutant GIST
 - Heinrich et al., *Science.*

1998

BRAF V600E
- Activating mutations in 7% of non-KIT/PDGFRA mutant
 - Agaram et al., *Genes Chrom Cancer.*

2008

Germline SDH
- 7 families with SDH A/B/C/D mutations
 - McWhinney et al., *NEJM.*

2006
The evolution of GIST genomics

KIT
- Gain-of-function mutations
 - Hirotag et al., *Science*.

Germline NF1
- GIST in pts with NF-1

BRAF V600E
- Activating mutations in 7% of non-KIT/PDGFR mutant
 - Agaram et al., *Genes Chrom Cancer*.

PDGFRA
- Activating mutations in 35% of non-KIT mutant GIST
 - Heinrich et al., *Science*.

Germline SDH
- 7 families with SDH A/B/C/D mutations
 - McWhinney et al., *NEJM*.

SDHC “Epimutation”
- SDHC promoter hypermethylation
 - Killean et al., *Sci Trans Med*.
The evolution of GIST genomics

- **KIT**
 - Gain-of-function mutations
 - Hirot a et al., *Science*.

- **Germline NF1**
 - GIST in pts with NF-1

- **BRAF V600E**
 - Activating mutations in 7% of non-KIT/PDGFRA mutant
 - Agaram et al., *Genes Chrom Cancer*.

- **ETV6-NTRK3**
 - Quadruple WT (KIT/PDGFRA/ RAS-P/SDH) have ETV6-NTRK3 fusion
 - Brenca et al., *J Pathol*
 - Shi et al., *JTM*.

- **PDGFRA**
 - Activating mutations in 35% of non-KIT mutant GIST
 - Heinrich et al., *Science*.

- **Germline SDH**
 - 7 families with SDH A/B/C/D mutations
 - McWhinney et al., *NEJM*.

- **SDHC “Epimutation”**
 - SDHC promoter hypermethylation
 - Killean et al., *Sci Trans Med*.
The evolution of GIST genomics

KIT
Gain-of-function mutations
Hirota et al., *Science*.

Germline NF1
GIST in pts with NF-1

BRAF V600E
Activating mutations in 7% of non-KIT/PDGFRA mutant
Agaram et al., *Genes Chrom Cancer*.

ETV6-NTRK3
Quadruple WT (KIT/PDGFR/ RAS-P/SDH) have ETV6-NTRK3 fusion
Brenca et al., *J Pathol*
Shi et al., *JTM*.

PDGFRA
Activating mutations in 35% of non-KIT mutant GIST
Heinrich et al., *Science*.

Germline SDH
7 families with SDH A/B/C/D mutations
McWhinney et al., *NEJM*.

SDHC “Epimutation”
SDHC promoter hypermethylation
Killean et al., *Sci Trans Med*.

FGFR1 fusions
Quadruple WT (KIT/PDGFR/ RAS-P/SDH) have FGFR1-HOOK3 & FGFR1-TACC1 fusions
Shi et al., *JTM*. 2016
Mutation Profile Associated with Location

- **Small Intestine**
 - KIT Exon 11/9 Gene Fusions
 - Germline NF1

- **Stomach**
 - KIT exon 11
 - PDGFRA
 - Germline SDHx
 - Epimutant SDH

- **Colon**
 - KIT

- **Ligament of Treitz**
 - KIT
 - BRAF V600E
 - Germline NF
 - Somatic NF1

References:
Burgoyne et al. JCO Precision Oncology, 2017.
Tumor Location within Organs Correlates with Mutation Profile

CIN - Chromosomal Instability
- Intestinal histology
- TP53 mutation
- RTK-RAS activation

GS - Genomically Stable
- Diffuse histology
- CDH1, RHOA mutations
- CLDN1S-ARHGAP fusion
- Call adhesion

MSI - Micro Satelite Instability
- Hypermutation
- Gastric-CIMP
- MLH1 silencing
- Mitotic pathways

EBV - Epstein Barr Virus
- PIK3CA mutation
- PD-L1/2 overexpression
- EBV-CIMP
- CDKN2A silencing
- Immune cell signaling

Caris Life Sciences. *ASCO*. 2017
Hypothesis

GIST arising from distinct regions within the stomach may possess unique genomic profiles.
Location of Gastrointestinal Stromal Tumor (GIST) in the Stomach Predicts Tumor Mutation Profile and Drug Sensitivity

Ashwyn K. Sharma1,2, Jorge de la Torre1,2, Nikki S. IJzerman3,4, Thomas L. Sutton5, Beiqun Zhao1,2, Tahsin M. Khan6, Sudeep Banerjee1,2,7, Christina Cui1, Vi Nguyen1, Maha Alkhuziem1,2, Petur Snaebjornsson8, Hester van Boven8, Annemarie Bruining9, Chih-Min Tang1,2, Hyunho Yoon1,2, Alexa De la Fuente1, Shumei Kato2,10, Hitendra Patel2,10, Michael C. Heinrich11, Christopher L. Corless12, Santiago Horgan13, Adam M. Burgoyne2,10, Paul Fanta2,10, Jill P. Mesirov2,14, Andrew M. Blakely6, Jeremy L. Davis6, Skye C. Mayo5, Winan J. van Houdt15, Neeltje Steeghs3, and Jason K. Sicklick1,2
National Cancer Database (NCDB)

$N = 2418$ patients

GIST Databases

Study Cohort

Gastric Location

NGS

Demographics & Pathology

Location in Stomach

Driver Mutation(s)

NIH National Institutes of Health
TransAtlantic GIST Collaborative (TAGC)

$N = 251$ patients

GIST Databases

Study Cohort

Gastric Location

NGS

Demographics & Pathology

Location in Stomach

Driver Mutation(s)
NCDB & TAGC Cohorts

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at diagnosis</td>
<td></td>
</tr>
<tr>
<td>Median [IQR]</td>
<td>64.5 [56–74]</td>
</tr>
<tr>
<td>Tumor size</td>
<td></td>
</tr>
<tr>
<td>< 2 cm</td>
<td>222 (9.2)</td>
</tr>
<tr>
<td>2.1-5.0 cm</td>
<td>828 (34.3)</td>
</tr>
<tr>
<td>> 5 cm</td>
<td>934 (38.7)</td>
</tr>
<tr>
<td>Unknown</td>
<td>420 (17.8)</td>
</tr>
<tr>
<td>Location within stomach</td>
<td></td>
</tr>
<tr>
<td>Cardia/fundus</td>
<td>785 (32.5)</td>
</tr>
<tr>
<td>Body/GC/LC</td>
<td>1,379 (57.0)</td>
</tr>
<tr>
<td>Antrum/pylorus</td>
<td>254 (10.5)</td>
</tr>
<tr>
<td>Gene testing</td>
<td></td>
</tr>
<tr>
<td>KIT only</td>
<td>2,162 (89.4)</td>
</tr>
<tr>
<td>PDGFRA only</td>
<td>22 (0.9)</td>
</tr>
<tr>
<td>Multigene^a</td>
<td>234 (9.7)</td>
</tr>
<tr>
<td>Mutation status</td>
<td></td>
</tr>
<tr>
<td>KIT</td>
<td>2,270 (93.9)</td>
</tr>
<tr>
<td>PDGFRA</td>
<td>81 (3.3)</td>
</tr>
<tr>
<td>KIT/PDGFRA wild-type^b</td>
<td>67 (2.8)</td>
</tr>
<tr>
<td>Baseline mitotic rate</td>
<td></td>
</tr>
<tr>
<td>Low (≤5/5 mm(^2))</td>
<td>1,770 (73.4)</td>
</tr>
<tr>
<td>High (>5/5 mm(^2))</td>
<td>440 (18.2)</td>
</tr>
<tr>
<td>Unknown</td>
<td>203 (8.4)</td>
</tr>
</tbody>
</table>

\(^{a}\) Indicates presence of both KIT and PDGFRA mutations.

\(^{b}\) Indicates presence of at least one additional mutation other than KIT and PDGFRA.
Non-\textit{KIT} Mutations are More Common in Distal Stomach
Mutation and Histology

Molecular-Morphologic types GIST

- **KIT mutated**: Spindle/mixed
- **PDGFR mutated**: Epithelioid
- **SDH deficient**: Epithelioid
- **RAS-P mutated**: Spindle
- **Unclassified**

- **c-KIT/DOG1 +ve**
- **DOG1 +ve**
- **SDHB -ve**
- **SDHB +ve**
Location Matters

Fundus
- (n=49, 21%)

Cardia
- (n=22, 9%)

Lesser Curvature
- (n=65, 28%)

Greater Curvature
- (n=57, 24%)

Antrum
- (n=40, 17%)

Fundus
- (n=49)

Cardia
- (n=20)

Lesser Curvature
- (n=64)

Greater Curvature
- (n=57)

Antrum
- (n=40)
Morphology & Location More Important than Age

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Univariable regression</th>
<th>95% CI</th>
<th>p-value</th>
<th>Multivariable regression</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤65 years</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>65 years</td>
<td>1.500</td>
<td>0.822 - 2.737</td>
<td>0.186*</td>
<td>2.343</td>
<td>1.065 - 5.157</td>
<td>0.034**</td>
</tr>
<tr>
<td>Tumor size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤7 cm</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>7 cm</td>
<td>1.029</td>
<td>0.581 - 1.821</td>
<td>0.923</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1.048</td>
<td>0.594 - 1.851</td>
<td>0.871</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximal</td>
<td>14.000</td>
<td>4.244 - 46.397</td>
<td><0.001*</td>
<td>17.735</td>
<td>3.905 - 80.550</td>
<td><0.001**</td>
</tr>
<tr>
<td>Distal</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth pattern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endophytic</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exophytic</td>
<td>0.756</td>
<td>0.419 - 1.367</td>
<td>0.355</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitotic rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low (≤5/5 mm²)</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High (>5/5 mm²)</td>
<td>1.320</td>
<td>0.657 - 2.649</td>
<td>0.435</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell morphology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spindle</td>
<td>Reference</td>
<td></td>
<td><0.001*</td>
<td></td>
<td><0.001**</td>
<td></td>
</tr>
<tr>
<td>Epithelioid</td>
<td>0.029</td>
<td>0.009 - 0.092</td>
<td>0.038</td>
<td>0.011</td>
<td>0.134</td>
<td>0.111</td>
</tr>
<tr>
<td>Mixed</td>
<td>0.106</td>
<td>0.049 - 0.229</td>
<td>0.111</td>
<td>0.047</td>
<td>0.261</td>
<td>0.261</td>
</tr>
</tbody>
</table>

83% accurate when including all tumors
Gastric GISTs are not homogenous and possess somatic mutations that correlate with tumor location.

Summary

- Gastric GISTs are not homogenous and possess somatic mutations that correlate with tumor location.

Clinical Implications

- In resource limited settings where mutation profiling is not widely available, or when time is of the essence to start treatment before profiling, knowing the tumor location & cell morphology may be predictive of K/IT vs non-K/IT mutations and in turn, potential TKI sensitivity or resistance.
THANK YOU!

Jason Sicklick, MD

jsicklick@health.ucsd.edu

@JasonSicklick